Cyclic AMP Diffusion Coefficient in Frog Olfactory Cilia
نویسندگان
چکیده
منابع مشابه
Olfactory Cilia in the Frog
Olfactory epithelium from the frog was examined in the living state by light microscopy and in the fixed state by electron microscopy. Particular attention was paid to the layer of cilia and mucus which covers the surface of the epithelium. The olfactory cilia differed from typical cilia in that they (a) arose from bipolar neurons and had centrioles near their basal bodies, (b) were up to 200 m...
متن کاملAn electrophysiological survey of frog olfactory cilia.
Individual olfactory receptor neurons vary widely in their responses to odorants. Olfactory stimulus reception occurs in the cilia of the receptor neurons. Thus, the variability among individual neurons could in part be due to differences among the olfactory cilia. We have quantified the known conductance properties of each of 117 frog olfactory cilia. From a strictly qualitative viewpoint, the...
متن کاملCalcium modulates the rapid kinetics of the odorant-induced cyclic AMP signal in rat olfactory cilia.
Although the cAMP and phosphoinositide (PI) second messenger systems are involved in olfactory signal transduction, aspects of their roles remain unclear. We have further examined the rapid kinetics of cAMP fluctuations in response to odorants in rat olfactory cilia isolated by calcium shock. Odorants cause a rapid and transient subsecond elevation of cAMP levels, as well as a more sustained si...
متن کاملCalcium-activated chloride conductance in frog olfactory cilia.
We have measured the effects of cytoplasmic Ca2+ on the conductance of single cilia excised from frog olfactory receptor neurons. When free cytoplasmic Ca2+ is buffered at 0.1 microM, ciliary conductance is low. As Ca2+ is increased, ciliary conductance increases. Maximal conductance averages sevenfold higher than that measured in the absence of Ca2+. We estimate that the K1/2 for Ca2+ activati...
متن کاملClustering of cyclic-nucleotide-gated channels in olfactory cilia.
Olfactory cilia contain the known components of olfactory signal transduction, including a high density of cyclic-nucleotide-gated (CNG) channels. CNG channels play an important role in mediating odor detection. The channels are activated by cAMP, which is formed by a G-protein-coupled transduction cascade. Frog olfactory cilia are 25-200 microm in length, so the spatial distribution of CNG cha...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Biophysical Journal
سال: 1999
ISSN: 0006-3495
DOI: 10.1016/s0006-3495(99)77440-0